

EVEKTOR – AEROTECHNIK a.s. Letecka 1384 686 04 Kunovice CZECH REPUBLIC tel.: +420 572 537 111 fax: +420 572 537 900 marketing@evektor.cz www.evektor.cz

PILOT'S OPERATING HANDBOOK

EV-97 model 2000, version R

0.1 Record of revisions

Any revision of the present manual, except actual weighing data, must be recorded in the following table and in case of approved Sections endorsed by the responsible airworthiness authority.

The new or amended text in the revised pages will be indicated by a black vertical line in the left hand margin, and the Revision No.. The date will be shown on the left hand bottom of the page.

Rev. No.	Affected Section	Affected Pages	Date	Approval	Date	Date Inserted	Signature
1	0	ii, iii, iv	04/2001			04/2001	Manufact.
	2	2-6, 2-11					
	5	5-3			\searrow		
	Valid from S	/N 2001100	1				
2	0	ii, iii, iv	10/2001			10/2001	Manufact.
	2	2-4, 2-5, 2-6, 2-9, 2-11					
	6	6-2	\sim	$\backslash \vee / \sim$			
	7	7-8	$\langle \rangle$	$\langle \rangle \rangle$			
	Valid from S	/N 2001130		\searrow			
			1				
			\square	/			
			\sim				
		$\langle \rangle$	$\langle \rangle$				
		$\overline{\langle}$					
			/				
		\searrow					
	$\langle \langle \rangle \langle \rangle$						
		>					
	$\langle \rangle$						
\sim							
	\sim						
	7			1		1	•

Document No.:Date of Issue:Revision:EV2000RLPEN10/20012

Ĺ

0.2	List of Ef	fective Pa	ages		((\bigcirc
Section	Page	Date	Section	Page		Date
			2	2-0	0	1/2001
	i	01/2001		2-1	Q	1/2001
	ii	10/2001		2-2	-⁄0	1/2001
	iii	10/2001		2-3	^{>} 0	1/2001
	iv	10/2001		2-4	1	0/2001
	v	01/2001	~	2-5	1	0/2001
				2-6	1	0/2001
				2-7	0	1/2001
1	1-0	01/2001		2-8	0	1/2001
	1-1	01/2001		2-9	1	0/2001
	1-2	01/2001		2-10	0	1/2001
	1-3	01/2001	$\nabla \nabla / $	2-11	1	0/2001
	1-4	01/2001	$\langle \rangle \rangle$	2-12	0	1/2001
	1-5	01/2001	\sum			
			\sum			
	/	$\overline{)}$	3	3-0	0	1/2001
				3-1	0	1/2001
				3-2	0	1/2001
		\bigtriangledown		3-3	0	1/2001
)		3-4	0	1/2001
	$\wedge $	X		3-5	0	1/2001
/				3-6	0	1/2001
				3-7	0	1/2001
				3-8	0	1/2001
	\geq					
Docum EV2000	ent No.:)RLPEN	Date o	f Issue: 2001 201	Revision: 2		ii

Section	Page	Date	Section	Page	Date
4	4-0	01/2001	6	6-0	01/2001
	4-1	01/2001		6-1	01/2001
	4-2	01/2001		6-2	10/2001
	4-3	01/2001		$\langle -$	
	4-4	01/2001	7	7-0	01/2001
	4-5	01/2001		7-1	01/2001
	4-6	01/2001	~	7-2	01/2001
	4-7	01/2001		7-3	01/2001
	4-8	01/2001		7-4	01/2001
	4-9	01/2001		7-5	01/2001
	4-10	01/2001		7-6	01/2001
		\langle		7-7	01/2001
5	5-0	01/2001		7-8	10/2001
	5-1	01/2001	\geq	7-9	01/2001
	5-2	04/2001	\sum	7-10	01/2001
	5-3	01/2001	\geq	7-11	01/2001
	5-4	01/2001			
	5-5	01/2001	8	8-0	01/2001
	5-6	01/2001		8-1	01/2001
	5-7	01/2001		8-2	01/2001
	5-8	01/2001		8-3	01/2001
	5-9	01/2001		8-4	01/2001
	5-10	01/2001		8-5	01/2001
\square	\searrow				
			9	9-0	01/2001
				9-1	01/2001
	\geq			9-2	01/2001

Document No.: EV2000RLPEN

Revision: 2

0.3	Table ofGeneral (a non-approLimitations. (an approved)Emergency (an approved)Normal proved (an approved)Performance (a partly app	Contents			ection 1
	General (a non-approved Limitations (an approved Emergency (an approved Normal prov (an approved Performanc (a partly app	byed section) d section) procedures d section) cedures d section)	(
	(a non-appro Limitations (an approved Emergency (an approved Normal prod (an approved Performanc (a partly app	d section) procedures d section) cedures d section)	(2
	Limitations (an approved Emergency (an approved Normal prov (an approved Performanc (a partly app	d section) procedures d section) cedures d section) e			2
	(an approved Emergency (an approved Normal proved (an approved Performanc (a partly app	d section) procedures d section) cedures d section) e			3
	Emergency (an approved Normal prov (an approved Performanc (a partly app	procedures d section) cedures d section)			3
	Normal proc (an approved Performanc (a partly app	cedures d section)			4
	Performanc (a partly app	•		\checkmark	
		roved section)		>	5
	Weight and (a non-appro	balance / equipmoved section)	ient list		6
	Aircraft and (a non-appro	systems descrip	tion		7
	Aircraft han (a non-appro	dling, care and r	naintena	nce	8
	Supplement	ts			9
	/		I		
\sim			1		

SECTION 1

1. GENERAL

- 1.1 Introduction
- 1.2 Certification basis
- 1.3 Warnings, cautions and notes
- 1.4 Descriptive data
- 1.4.1 Aircraft description
- 1.4.2 Technical data
- 1.5 Three-view drawing

~	Document No.:
/	EV2000RLPEN

1.1 Introduction

The aeroplane Flight Manual has been prepared to provide pilots and instructors with information for the safe and efficient operation of the *EV-97 "EUROSTAR" model 2000 version R* ultra-light aeroplane.

It also contains supplemental data supplied by the aeroplane manufacturer.

1.2 Certification basis

This aircraft type has been approved by the responsible airworthiness authorities listed below:

CZECH REPUBLIC
Type Certificate No.:

/ULL - 03/98/"b" 00

Date of approval:

Approved by:

13.10,2000 Light Aircraft Association

of Czech Republic

Certificate of Airworthiness. "P"

Document No.: EV2000RLPEN	Date of Issue: 01/2001	Revision:	1-1

1.3	Warning	s, cautions and no	otes	otes in the			
	flight manua	l.					
				/			
	Means that	WARNING	G	rocedure			
	leads to an i	mmediate or important de	egradation of the flig	ht safety.			
		CAUTION	1				
	Means that leads to a r safety.	the non-observation of t ninor or possible long te	he corresponding p frm degradation of	rocedure the flight			
		NOTE					
	Draws atten but which is	tion to any special item i important or unusual.	not directly related t	o safety,			
	ent No.: RLPEN	Date of Issue: 01/2001	Revision:	1-2			
EV2000	RLPEN	01/2001		1			

1.4 Descriptive data

1.4.1 Aircraft description

EV-97 "**EUROSTAR" model 2000 version R** is an aircraft intended especially for recreational and touring flying, with a limitation to non-aerobatic operation.

The EV-97 "EUROSTAR" model 2000 version R is a single engine, all metal, low-wing monoplane of semimonocoque construction with two side-by side seats. The aeroplane is equipped with a fixed tricycle undercarriage with a controllable nose wheel.

The powerplant is composed of the ROTAX 912 (80 hp), four cylinder, four stroke engine and the two blade V 230C, fixed wooden propeller (standard powerplant).

Alternatively it is possible to upgrade the engine to the ROTAX 912S (100 hp) and other propellers according to consumer's request.

Document No.: EV2000RLPEN

1.4.2	Technica	l data			\sum
	Wing				\mathcal{I}
	span	8.1	m .	26.5	57 ft
	area		m² 🦯	105.9	92 ft ²
	MAC			4.1	10 ft
	loading	45.7	kg/m² 🚽	⁄ 9.3	37 lb/ft ²
	Ailero	n	\frown	\geq	
	area.			∼ 2.2	26 ft ²
	Flor				
	riap	0.52	m ²	56	so ft ²
	alea.			0.0	<i>i</i> 0 <i>n</i>
	Fuselage		\checkmark		
	length		m	19.6	52 ft
	width		> m	3.4	11 ft
	height		m	7.6	57 ft
	Horizontal ta	nil unit 🛛 🔿 📈			
	span		m	8.2	20 ft
	area		m ²	20.9	$\partial 9 ft^2$
	elevator area	a0.8	m ²	8.6	30 ft ²
	Vertical tail u	unit			
	height		m	4.0)7 ft
	area,	.,	m ²	10.7	76 ft ²
	rudder area.		m ²	4.3	30 ft ²
	l anding dea	r			
	wheel track	1.6	m	5.2	25 ft
	wheel base .	1.35	m	4.4	12 ft
/	main wheel	diameter 350	mm	14	t in
	nose wheel	diameter350	mm	14	t in
	$\langle \rangle$				
$\langle \rangle$	\sim				
	7				
\sim					
$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	/				
$\langle \rangle$					
\sim		I			
	ent No.:	Date of Issue:	Revisio	n:	
EV2000	RLPEN	01/2001			1-4

SECTION 2

2. LIMITATIONS

- 2.1 Introduction
- 2.2 Airspeed
- 2.3 Airspeed indicator markings
- 2.4 Powerplant
- 2.5 Powerplant instrument markings
- 2.6 Miscellaneous instrument markings
- 2.7 Weight
- 2.8 Centre of gravity
- 2.9 Approved manoeuvres
- 2.10 Manoeuvring load factors
- 2.11 Crew
- 2.12 Kinds of operation
- 2.13 Fuel
- 2.14 Maximum passenger seating
- 2.15 Other limitations
- 2.16 Limitation placards

2.1 Introduction

Section 2 includes operating limitations, instrument markings and basic placards necessary for the safe operation of the aircraft, its engine, standard systems and standard equipment.

2.2 Airspeed

Airspeed limitations and their operational significance are shown below:

	Speed		Speed IAS		Remarks
opeed		[km/h] <i>[kts]</i>			
V_{NE}	Never exceed speed	270	146	Do not exceed this speed in any operation.	
V _A	Manoeuvring speed	160	86	Do not make full or abrupt control movement above this speed, because under certain conditions the aircraft may be overstressed by full control movement.	
V _{NO}	Maximum structural cruising speed	190	103	Do not exceed this speed except in smooth air, and then only with caution.	
V_{FE}	Maximum Flap. Extending speed	125	67	Do not exceed this speed with flaps extended.	
		\bigtriangledown			

Document No.: EV2000RLPEN

2.3 Airspeed indicator markings

Airspeed indicator markings and their colour-code significance are shown below:

1					
	Marking	IAS value	or range	Significar	ce
		[km/h]	[kts]		
	White arc	58-125	31-67	Positive Flap Opera	ting Range.
	Green arc	75-190	40-103	Normal Operating R	ange.
	Yellow arc	190-270	103-146	Manoeuvres must b conducted with caut only in smooth air.	e ion and
	Pod	270	146	Maximum speed for operations.	all
	line	58	31	Stall speed in landing configuration (max. extende flaps, engine on idle)	
			/		
Documei EV2000F	nt No.: RLPEN	Date of 01/2	Issue: 001	Revision:	2-2

					<u> </u>		
2.4	l	Powerpla	ant	(
ROT	AX 9	12 engine is	s installed in the aircraft of S/	N			
Engir	ne M	odel:	ROTAX 912A (or UL)	ROTAX 912A (or UL) ROTAX 912S (or ULS)			
Engir	ne M	anufacturer:	Bombardier-Rotax GMBH				
	Ma	Talia affi	59.6 kW / 80 hp 73.5 kW / 100 hp				
L	wa.	x Take-on:	at 5800 rpm, max.5 min.	ix.5 min.			
Me	Ma	v Continuous:	58 kW / 78 hp 69 kW / 93.8 hp				
Po	IVIA.	x. Continuous.	at 5500 rpm				
	Cru	iising:	37.7 kW / 50.6 hp	37.7 kW / 50.6 hp 44.6 kW / 59.8 hp			
	Mo		at 4800 rpm	rom may 5 min			
e p	Ma	x. Take-UII.	5500) rpm, max. 5 mm.			
ngir	Cru	isina	4800) rom			
дS	Idlin	nang. na	/~1400) rpm			
	jiji jiji						
nder ad	ratur	Minimum:	60 °C 140 °F	°C °C ∼	140 °F		
Cylir he	mpe	Maximum:	150 °C 302 °F	135 °C	275 °F		
	re te	Minimum:	50 °C 122 °E	50 °C	122 °F		
Ē	eratu	Maximum:	140 °C 284 °F	130 °C	266 °F		
0	du				200 1		
	Deptimum:		90°C - 110°C 194 - 230	°F 90 °C - 110 °C	194 - 230°F		
_	_ @ Maximum:			7,0 bar			
ō	esse	Minimum:		1,5 bar			
	bid	Optimum:	1,5-4,0 bar				
Fuel:			see 2.13				
Oil:			Automotive engine oil of re	gistered brand with g	ear additives,		
			API classification "SF" or "	engine Operator's Ma SG".	anual).		
Prop	eller	and /	V 230C				
Manu	lfacti	urer	VZLÚ Praha, Czech Republic				
Туре			two blade fixed wooden propeller				
Prop	eller	diameter:	∕ <u>1625 ⁺²-₃ mm</u>	63.98 ^{+0.008} -0.01 in	63.98 ^{+0.008} -0.01 in		
Prop	eller	piţch:	18°20´ - 18°55´				
	~						
		$\langle \rangle$					
\langle		\searrow					
/	-	\rightarrow	WARNING				
The I	Rota	x 912 UL has no	ot been certified as an aircraf	t engine and its failur	e may occur		
at an	<u>y tim</u>	e. The pilot is fu	ully responsible for conseque	nces of such a failure			
$\overline{}$	$\overline{}$						
]						
		ant Nie i	Date of Issue:	Devision			
			01/2001	Revision:	2-3		
	.000		01/2001		23		

2.5 Powerplant instrument markings

The analogous powerplant instruments are installed in the EV-97 aeroplane model 2000 version R, with following colour marking

Function Engine speed (RPM) Exhaust Gases Temperature (EGT)		Minimum	nimum Narmal Cautian Maximum			
		Limit (red line)	Operating (green arc)	Range (yellow arc)	Range (red line)	
		1400	1400-5500	5500-5800	5800	
					880 °C	
Cylinder Head Tempe-	R 912 UL	60 °C	60/100 °C	100-150 °C	150 °C	
rature (CHT)	R 912 S	00 °C		100-135 °C	135 °C	
Oil Tempe-	R 912 UL	50 °C	90-110 °C	50-90 °C 110-140 °C	140 °C	
rature	R 912 S			50-90 °C 110-130 °C	130 °C	
C Pres	Dil ssure	1.5 bar) 1.5 - 4.0 bar	- 4.0 - 5.0 bar	7.0 bar cold engine starting	
Document No.: EV2000RLPEN		Date c 01/2 10/20	of Issue: 2001 01	Revision: 2	2-4	

EV-97 EURO MODEL 2000 STAR version R

2.13 Fuel

- automotive petrol with min RON 95
- EN 228 Premium
- EN 228 Premium plus
- AVGAS 100 LL Due to higher lead content in AVGAS, the wear of valve seats and deposits in the combustion chamber and lead sediments in the lubrication system will increase / Therefore, use AVGAS only if you encouter problem with vapour lock or if the other fuel types are not available. NOTE Use only fuel suitable for the respective climatic zone. Risk of vapour formation if using winter fuel for summer operation. For other suitable fuel types refer to the engine Operator's Manual. 17.2 1 USgals Unusable fuel quantity 2.9 I 0.77 USgals Maximum passenger seating 2.14 Number of seats...

		version R	
2.15 Other lin	nitations		\bigcirc
No smoking	onboard the aeroplane.		
		$\langle \rangle$	
		$ \longrightarrow $	
	~	$\left(\bigcirc \right)$	
	ζ	\searrow	
		\rightarrow	
		\checkmark	
	$\langle \rangle$		
\langle			
\wedge			
\longrightarrow			
$\overline{\ }$			
Document No.: EV2000RLPEN	Date of Issue: 01/2001	Revision:	2-10

PILOT'S OP	PERATING HAN		CV-97 EURO ODEL 2000 STAR Orsion R
BAGGAG MAX. 15 kg	E or B	AGGAGE MAX. 33 lbs	

SECTION 3

3. EMERGENCY PROCEDURES

3.1 Introduction

3.2 Engine failure

- 3.2.1 Engine failure during take-off run
- 3.2.2 Engine failure during take-off

3.2.3 Engine failure in flight

3.3 In-Flight start

3.4 Smoke and fire

- 3.4.1 Fire on ground
- 3.4.2 Fire during take-off
- 3.4.3 Fire in flight

3.5 Glide

3.6 Landing emergencies

- 3.6.1 Emergency landing
- 3.6.2 Precautionary landing
- 3.6.3 Landing with a flat tire
- 3.6.4 Landing with a defective landing gear

3.7 Recovery from unintentional spin

3.8 Other emergencies

- 3.8.1 / Vibration
- 3.8.2 Carburettor icing

3.1 Introduction

Section 3 provides checklists and amplified procedures for coping with various emergencies that may occur. Emergencies caused by aircraft or engine malfunction are extremely rare if proper pre-flight inspections and maintenance are practised.

However, should an emergency arise, the basic guidelines described in this section should be considered and applied as necessary to correct the problem.

3.2 Engine failure

3.2.1 Engine failure during take-off run

- 1. Throttle
- decrease to idling
- 2. Ignition
- switch off
- 3. Brake

3.2.2 Engine failure during take-off

1. Speed gliding at 110 km/h (60 kts) 2. Altitude below 50 m (160 ft): land in take-off direction over 50 m (160 ft): choose landing area 3. Wind find direction and velocity 4. Landing area choose free area without obstacles 5. Flaps extend as needed 6. /Fuel cock shut off 7. Ignition switch off Propeller set to the horizontal position by means of 8. starter 9. /Safetv harness - tiahten 10. Master switch switch off before landing 11. Land NOTE Skip 6-10 if necessary. Date of Issue: Document No.: Revision: 3-1 01/2001 EV2000RLPEN

3.2.3 Engine failure in flight

- 1. Speed
- 2. Altitude
- 3. Wind
- 5. VVING
- 4. Landing area
- 5. Flaps
- 6. Fuel cock
- 7. Ignition
- 8. Propeller starter
- 9. Safety harness
- 10. Master switch
- 11. Land

- gliding at 110 km/h (60 kts)
- below 50 m (*160 ft*): land in flight direction over 50 m (*160 ft*): choose landing area
- evaluate direction and velocity
- choose free area without obstacles
- extend if necessary
- shut off
- switch off
- set to the horizontal position by means of
- tighten
 - switch off before landing

~	Document No.:
/	EV2000RLPEN

3.3 In-Flight start 1. Speed - gliding at 110 km/h (60 kts, 68 mph) 2. Altitude - check 3. Landing area - choose according to altitude 4. Master switch - switch on 5. Fuel cock - open 6. Electric fuel pump - switch on (if installed) - as necessary (for cold engine) 7. Choke 8. Throttle - for 1/3 power 9. Ignition box - switch to BOTH and activate starter If the engine cannot be started increase the flight speed to 200 km/h (110 kts, 124 mph) so that air flow can rotate the propeller, thus enabling the engine to start. WARNING The loss of altitude during in-flight engine starting is about 400 m (1300 ft) and must be taken into consideration. Smoke and fire 3.4 3.4.1 Fire on ground 1. Fuelcock shut off 2. Throttle full 3. Master switch switch off 4. Ignition switch off 5. Abandon the aeroplane 6. Extinguish fire if it is in your power or call for a fire-brigade. Date of Issue: Document No.: Revision: 3-3 01/2001 EV2000RLPEN

 $\langle \rangle$

PILOT'S OPERATING HANDBOOK

EV-97 EURO X MODEL 2000 STAR

				version i	≦ →★★≁∕	
3.4.2	Fire durin	g take-off		((\bigcirc	
	1. Fuel coc	k - shut	off			
	2. Throttle	- full		\sim		
	3. Speed	- 100-	110 km	/h (54-60 kts)		
	4. Master s	witch - switc	h off		>	
	5. Ignition	- switc	h off			
	6. Land and	l brake				
	7. Abandon	the aeroplane		$(\) $		
	8. Extinguis	sh fire if it is in you	r powei	r or call for a fire-brig	ade	
3.4.3	Fire in flig	jht	\land			
	1. Fuel coc	k - shuť	off	\sim		
	2. Throttle	- full	\frown	\geq		
	3. Master s	witch - swite	hoff	\checkmark		
	4. Ignition	- switc	h off af	ter using up fuel in c	arburettors	
	5 Choose (of area - bead	ie stopp	the nearest airport	or choose	
	emer-	gend	y landir	ig area		
	6. Emerg. la	anding - perfo	rm acc	ording to par. 3.6.1		
	7. Abandon	the aeroplane				
	8. Extinguis	fire it it is in you	r powei	r or call for a fire-brig	ade.	
		~~~	NOTE			
	Estimated time to pump fuel out of carburettors is 30 seconds.					
/		/				
	Č <					
	$\searrow$					
	$\geq$					
	>					
$ \langle \ \backslash \lor \rangle$	/					
Docum	ent No :	Date of Iss	ne.	Revision:		
EV2000	RLPEN	01/2001		NEVISIUII.	3-4	





## 3.5 Glide

An example of the use of gliding is in the case of engine failure,

- 1. Speed
- ~110 km/h (60 kts)
- Flaps
  Instruments
- retracted
  within permitted limits

## 3.6 Landing emergencies

#### 3.6.1 Emergency landing

5. Flaps

- 1. Emergency landings are generally carried out in the case of engine failure and the engine cannot be re-started.
- 2. Speed 110 km/h (60 kts)
- 3. Trim trim the aeroplane
- 4. Safety harness tighten
  - as needed
- 6. Radio station report your location if it is possible
- 7. Fuel cock shut off
- 8. Ignition switch off
- 9. Master switch switch off

Document No.: EV2000RLPEN





## 3.6.2 Precautionary landing

A precautionary landing is generally carried out in the cases where the pilot may be dissorientated, the aircraft has no fuel reserve or possibly in bad weather conditions.

- 1. Choose landing area, determine wind direction
- 2. Report your plan to land and land area location if a COMM is installed in the aeroplane
- 3. Perform low-altitude passage into wind over the right-hand side of the chosen area with flaps extended to the "TAKE-OFF" position at a speed of 110 km/h (60 kts) to thoroughly inspect the area.
- 4. Perform flight around the chosen area
- 5. Perform an approach at/increased idling with fully extended flaps
- 6. Reduce power to idle run when fly over the runway threshold and touch-down at the very beginning of the chosen area
- 7. After stopping the aeroplane switch off all switches, shut off the fuel cock, lock the aeroplane and look for help
  - ∖ ___ NOTE

Watch the chosen area permanently during precautionary landing.

## 3.6.3 Landing with a flat tire

- 1. When floating at landing, keep the damaged wheel above ground as long as possible using the ailerons
- 2. Maintain the direction at landing run, applying foot control

## 3.6.4 Landing with a defective landing gear

If the main landing gear is damaged, perform touch-down at the Lowest speed possible and maintain direction at landing run, if possible

2. If the nose wheel is damaged perform touch-down at the Lowest speed possible and hold the nose wheel over a runway by means of the elevator control as long as it is possible





## 3.7 Recovery from unintentional spin

#### WARNING

Intentional spins are prohibited! The spin characteristics of this aircraft have not been tested. The procedure below is only for information.

The aircraft has no tendency to spontaneously enter into an uncontrollable spin if normal piloting techniques are used.

This standard procedure can be used to recover from an intentional spin:

- 1. Throttle reduced to idle
- 2. Control stick
- ailerons neutralisedfull opposite rudder
- 3. Rudder pedals
- Control stick a
- forward elevator control as required to stop spinning
   immediately after stop of a rotation
- 5. Rudder pedals neutralise
- immediately after stop of a rotation the rudder
- 6. Recovery of the dive





## 3.8 Other emergencies

#### 3.8.1 Vibration

If any forced aircraft vibrations appear, it is necessary:

- 1. To set engine speed to such power rating where the vibrations are lowest.
- 2. To land on the nearest airfield or to perform a precautionary landing according to 3.6.2.

## 3.8.2 Carburettor icing

Carburettor icing mostly occurs when entering into an area of ice formation. The carburettor icing shows itself through a decrease in engine power and an increase of engine temperatures.

To recover the engine power, the following procedure is recommended:

- 1. Speed 110 km/h (60 kts)
- 2. Throttle set for 1/3 power
- 3. If possible, leave the icing area
- 4. Increase the engine power gradually to cruise conditions after 1-2 minutes

If you fail to recover the engine power, land on the nearest airfield (if possible) or, depending on the circumstances, perform a precautionary landing according to 3.6.2.

Document No.: EV2000RLPEN





# **SECTION 4**

## 4. NORMAL PROCEDURES

- 4.1 Introduction
- 4.2 Assembly and disassembly
- 4.3 Pre-flight inspection

## 4.4 Normal procedures

- 4.4.1 Before entering cockpit
- 4.4.2 After entering cockpit/
- 4.4.3 Before engine starting and Engine starting
- 4.4.4 Engine warm up, Engine check
- 4.4.5 Taxiing
- 4.4.6 Before take-off
- 4.4.7 Take-off
- 4.4.8 Climb
- 4.4.9 Cruise
- 4.4.10 Descent
- 4.4.11 Check before landing
- 4.4.12 On base leg
- 4.4.13 On final
- 4.4.14 Landing
- 4.4.15 Balked landing
- 4.4.16 After landing
- 4.4.17 Éngine shutdown
- 4.4.18 Flight in rain





## 4.1 Introduction

Section 4 provides checklists and amplified procedures for the conduct of normal operation.

Normal procedures associated with optional systems can be found in section 9.

## 4.2 Assembly and disassembly

For assembly and disassembly procedures refer to the Technical Description, Operating and Maintenance Manual for the Ultra-light Aeroplane *EV-97*, *EUROSTAR" model 2000* version *R*.

## 4.3 Pre-flight inspection

The pre-flight inspection performance is very important by reason that incomplete or careless performance could cause aircraft failure. The following pre-flight inspection procedure is recommended by the aircraft Manufacturer:






- $\Rightarrow$  Check if ignition is switched off in the cockpit
- 1. Wing
  - Wing surface condition
  - Leading edge condition
  - Pitot tube condition
- 2. Wing tip
  - Surface condition
  - Check of tips attachment
  - Condition and attachment of position lights (if installed)
- 3. Aileron
  - Surface condition
  - Attachment
  - Play
  - Free movement
- 4. Flap
  - Surface condition
  - Attachment
  - Play
- 5. Rear part of fuselage
  - Surface condition
- 6. Vertical tail unit
  - Surface condition
  - Play
  - Free movement
- 7. Horizontal tail unit
  - Surface condition
  - Attachment
  - Play
  - Free movement
  - Trim tab condition
- 8. see 5
- 9. see 4
- 10. see 3
- 11. see 2
- 12, see 1
- 13. Landing gear
  - Check of main and nose landing gear attachment
  - Check cable control of controllable nose wheel (if it is installed)





- Condition of tires
- Condition and attachment of wheel spats
- 14. Engine
  - Engine cowlings condition
  - Engine bed condition
  - Engine attachment check
  - Oil quantity check (between guidelines)
  - Water radiator hoses check
  - Fuel and Electric system visual check
  - Fuel system draining
  - Other checks according to engine manufacturer instructions

#### CAUTION

It is advisable to turn the propeller by hand with the ignition switched off in the case where the engine has been out of operation for a long time. Avoid excessive pressure on a blade tip and trailing edge.

15. Propeller

- Propeller attachment
- Blades, Hub, Spinner condition
- Other checks according to propeller manufacturer instructions
- 16. Cockpit
  - Turn handle clockwise to open cockpit and lift canopy

NOTE

When keyway is in handle axis, cockpit is locked. Unlock it first with key to keyway perpendicular position to the handle axis.

- Ignition
  - switched off
  - Master switch
- InstrumentsFuel dauge
- switched off
- check of condition
- fuel quantity check (for fuel
- quantity check switch on Switch box and Master switch, then switch off!)
- Controls

- visual check
- check for proper function
- check of plays
- check of flaps extension
- check of free movement up to the stops
- Check for free items

Canopy

- Condition of attachment, cleanliness

$\bigcirc$	Document No.: EV2000RLPEN	Date of Issue: 01/2001	Revision:	4-3
	$\searrow$			





					Version	` <b>**</b> *
4.4	Normal p	procedures				$\bigcirc$
4.4.1	<ol> <li>Before en</li> <li>Aeroplan</li> <li>Cockpit</li> <li>Ignition</li> <li>Master st</li> </ol>	itering cock e surface witch	pit - check c - items ir - off - off	of covers and iside the coci	caps kpit	
4.4.2	After enter 1. Rudder p 2. Brakes 3. Control s 4. Trim 5. Flaps 6. Engine c (throttle, 7. Fuel cocl 8. Fuel gau 9. Master s 10. Circuit br 11. Ignition 12. Instrumé 13. Safety ha 14. Cockpit	ering cockpi bedals tick ontrols choke) ( ge witch eakers nts, COMM, arness	t - free mo - check o - free mo - check o - check o - check o - check o - off - off - off - check o - check o	ovement checo of function ovement checo of lever move of function of movement antity check on check of integrity on and canop	sk sk ment	unction
Docume EV2000F	nt No.: RLPEN	Date of 01/20	lssue: 001	Revisio	n:	4-4

		PILOT'S	OPERATING	6 HAND	DBOOK	<b>EV-9</b> MODEL 2 version F	7 EURO 1000 STAR
	4.4.3	Before er	ngine starting	and E	Engine sta	rting (	
		1. Fuel cocl	k s	- open	U		$\bigcirc$ /
		2. Circuit br	reakers	- switch o	on		
		3. Throttle		- set for i	idling		
		4. Choke		- accordi	ng to engine	temper	ature
		5. Control s	stick	- fully pu	lled 🧹 🔫	/	
		6. Check of	free area			$\geq$	
		7. Master s	witch	- switch o	on 🔿	$\checkmark$	
		8. Propeller	r .	- set for is instal	take-off if in- lled	flight va	riable prop
		9. Electric f (if installe	uel pump ed)	- switch	on		
		10. Ignition b	xox	- switch t	to BOTH and	activat	e starter
		11. After star	rting 🧹	- set thro	ttle to idling		
		12. Oil press	sure	- within 1	Ø sec. min. p	ressure	;
		13. Choke		- push to	shut		
		14. Engine w	varm	-/accordi	ng to 4.4.4		
				CAUTIC	N		
		The starter s	should be activation	ed for a	maximum o	f 10 se	c., followed
		by a 2 min. p	pause for engine	cooling.			
		After starting	g the engine, a	adjust th	e throttle fo	r smoo	th running
		increase wit	00-2750 rpm. ( hin 10 sec inc	леск tr rease th	ne oli pressi ne engine si	ure, wn beed a'	fter the oil
		pressure has	s reached 2 bars	(29 psi)	and is steady	/.	
		To avoid she	ock loading, start	the eng	ine with the t	hrottle l	ever set for
		idling or a r	maximum of 10	% oper	ned, then wa	ait 3 se	c to reach
		constant eng	gine speed before	e new ac	celeration.	<b>(f)</b>	
	/	Only one n	nagneto snould	DE SWI	tched on (o	m) auri	ng ignition
			5011.				
		$\sim$					
		$\geq$					
	$\sim$	/					
		7					
$\frown$							
$\bigcirc$	Docume EV2000	ent No.: )RLPEN	Date of Is 01/200	sue: 1	Revisio	n:	4-5

/****





#### 4.4.4 Engine warm up, Engine check

Lock the main wheels by means of Scotch blocks before engine check. Initially warm up the engine to 2000 rpm then continue to 2500-2750 rpm till oil temperature reaches  $50^{\circ}C$  (122 °F). The warm up period depends on ambient air temperature.

Check both ignition circuits at 3850 rpm (4000 rpm for Rotax 912S). The engine speed drop during the time either magneto switched off should not overcome 300 rpm. The Max. engine speed drop difference between circuits R and L should be 115 rpm.

Set max. power for verification of max. speed with given propeller and engine parameters (temperatures and pressures).

Check acceleration from idling to max power. If necessary, cool the engine at 3000 rpm before shutdown.

Check the function of the pitch setting mechanism if in-flight variable prop is installed.

#### CAUTION

The engine check should be performed with the aircraft heading upwind and not on loose terrain (the propeller may suck impurities which can damage the leading edges of blades).

#### 4.4.5 Taxiing

The recommended taxiing speed is 15 km/h (*8 kts*). The direction of taxiing can be controlled by the controllable nose wheel or by brakes. Hydraulic disc brakes are controlled by pedals on the rudder control.





PILOT'S OPER	RATING HAND	воок	EV-97 EUR MODEL 2000 \$1 ersion R
5. Landing area ch	eck - runway are:	a, base leg ar	
			/
		$\searrow$	
/			
$\sim$			





#### 4.4.12 On base leg 1. Speed - 110 km/h (60 kts, 68 mph) 2. Flaps - extend to "Take-off" position - in case of adjustable propeller set for 3. Propeller take-off (fine pitch) WARNING Control overswitch of the constant speed propeller must be set to the "MANUAL" position before landing, and must stay in this position at landing, and propeller pitch must be set as above. 4 Trim - adjust 5. Electric fuel pump (if installed) - switch on 6. Throttle - as necessarv 7. Instruments - within limits 4.4.13 On final 1. Speed 110 km/h (60 kts, 68 mph) - "Landing" position 2. Flaps 3. Trim - adiust⊸ 4. Throttle - as nécessary 5. Propeller -in case of constant speed prop. check setting of control overswitch to"MANUAL" position 6. Instruments values within limits 4.4.14 Landing The airspeed during float is slowly reduced, so that the touch down speed is about 70 km/h (38 kts. 44 mph). Gradually pull the stick after touch down to hold the nose wheel up as/long as possible. Push the control stick when the nose wheel touches the ground. The landing run can be shortened by braking. 4.4.15 Balked landing 1. Throttle - full 2. Engine speed - max.5800 rpm - set to the "Take-off" position 3. Flaps at a speed of 100 km/h (54 kts, 62 mph) 4/ Trim - as necessary 5. Flaps - retract at a height of 50 m (165 ft) 6. Trim - adjust 7. Engine speed - MTV, max.5500 rpm Date of Issue: Document No.: Revision: 4-10 01/2001 EV2000RLPEN





- 8. Instruments
- 9. Climb
- within limits
- at 110 km/h (60 kts, 68 mph)

#### 4.4.16 After landing

- 1. Engine speed
- 2. Flaps
- 3. Trim

#### 4.4.17 Engine shutdown

#### 1. Engine speed

- 2. Instruments
- 3. COMM + intercom
- 4. Electric fuel pump (if installed)
- 5. Ignition box
- 6. Circuit breakers
- 7. Master switch
- 8. Fuel cock

- set as necessary for taxiing
- retracted and locked
- neutral position  $\langle$
- idling
- engine instruments within limits
- switch off
- switch off
- turn the key counterclockwise to switch off
- switch off
- switch off
  - shut off

#### CAUTION

Rapid engine cooling should be avoided during operation. This happens above all during aircraft descent, taxiing, low engine rpm or at engine shutdown immediately after landing.

Under normal conditions the engine temperatures stabilize during descent, taxiing and at values suitable to stop engine by switching the ignition off. If necessary, cool the engine at 2500 – 2750 rpm to stabilize the temperatures prior to engine shut down.

#### 4.4.18 Flight in rain

When flying in the rain, no additional steps are required. Aircraft qualities and performance are not substantially changed.

The slide window on the cockpit canopy may be used to make the visibility better under bad weather conditions and heavy rain.







## **SECTION 5**

## 5. PERFORMANCE

#### 5.1 Introduction

#### 5.2 Approved data

- 5.2.1 Airspeed indicator system calibration
- 5.2.2 Stall speeds
- 5.2.3 Take-off performance
- 5.2.4 Landing distances
- 5.2.5 Climb performance

#### 5.3 Additional information

- 5.3.1 Cruise
- 5.3.2 Endurance
- 5.3.3 Balked landing climb
- 5.3.4 Effect on flight performance and characteristics
- 5.3.5 Demonstrated crosswind performance
- 5.3.6 Ceiling
- 5.3.7 Noise data





#### 5.1 Introduction

Section 5 provides approved data for airspeed calibration, stall speeds, take-off performance and non-approved additional information.

The data in the charts has been computed from actual flight tests with the aircraft and engine in good conditions and using average piloting techniques.

If not stated otherwise, the performance stated in this section is valid for the max. take-off weight and flight under ISA conditions.

The performance given in this section is valid for aircraft with given engine and propeller types.





-2

#### 5.2 Approved data

### 5.2.1 Airspeed indicator system calibration

					$\langle \rangle$		
	IAS	CAS		IAS	CAS	>	
	[km/h]	[km/h]		[kts]	[kts]		
vSO	58	65		31	-35	vSO	
	60	67		35	38 \	$\sim$	
	70	76		<b>4</b> 0 (	43	vS1	
vS1	75	80		_45	<b>4</b> 7 /		
	80	85		50	-52		
	90	94	$\square$	55	57		
	100	103	/ •	60	/ 61		
	110	112 /	$\sim$	67	67	vFE	
	120	121		70⁄	70		
vFE	125	126		75	75		
	130	130 🗸	$\overline{}$	/80	79		
	140	_139∖_	~ /	86	84	vA	
	150 🧹	148	$\left( \right)$	90	88		
vA	160	157	$\sim$	95	93		
	170	166		100	97		
	180	175/		103	100	vNO	
vNO	190	184		110	106		
	200	<u> </u>		115	111		
<	210	√ 202		120	115		
	220	211		125	120		
	230/	220		130	124		
	235	225		135	129		
$\sim$	240	229		140	133		
/ 7 ~~	245	234		146	139	vNE	
	250	238		<u> </u>		1	
$\sim$	255	243					
	260	247					
$\rightarrow$	265	252					
	270	256					
			1				
Document No.: EV2000RLPEN		Date of Is 01/200	sue: 1		Revisio	n:	5
>							





### 5.2.2 Stall speeds

Stall	Flap setting	Power	r Warning speed Stalling speed						
		setting		IAS [km/h]	CAS [km/h]				
	"RETRACTED"	Idling		71	77				
		MCP	No distinctive warning.	59	66				
Wing	"TAKE-OFF"	Idling		67 /	73				
level		MCP	Aeroplane downward	54	62				
stall	"LANDING"	Idling	motion without pitching.	63	70				
	1st. Position	MCP		49⁄	57				
	"LANDING"	Idling		58	65				
	2nd position	MCP		) 46	54				
	"RETRACTED"	Idling	Aeroplane is fully	/ 73	79				
Turning		MCP	controllable.	63	70				
Flight	"TAKE-OFF"	Idling		69	75				
(steady		MCP	No excessive løss 💦 🔶 🖉	57	64				
turn with 30°	"LANDING"	Idling	of altitude during	64	71				
banking)	1st. Position	MCP	recovery.	52	60				
	"LANDING"	Idling		60	67				
	2nd position	MCP		50	58				
Stall	Flap setting	Power	Warning speed	Stalling	g speed				
		setting	$\setminus$ $\setminus$ $\langle$						
				IAS [kts]	CAS [kts]				
	"RETRACTED"	Idling	$\searrow$	38	41				
		MCP	No distinctive warning	.32	36				

	"RETRACTED"	Idling	$\bigwedge$ $\searrow$	38	41
		MCP	No distinctive warning.	32	36
Wing	"TAKE-OFF"	< Idling	$\hat{}$	36	40
level		MQP	Aeroplane downward	29	33
stall	"LANDING"	Idling	motion without pitching.	34	38
	1st. Position		$\sim$	26	31
	"LANDING"	/ Idling /	1	31	35
	2nd position	MCP~		25	29
	<u>,                                     </u>	<u>_</u>			
	"RETRACTED"	Idling	Aeroplane is fully	39	42
	"RETRACTED"	Idling MCP	Aeroplane is fully controllable.	39 34	42 38
	"RETRACTED" "TAKE+OFF"	Idling MCP Idling	Aeroplane is fully controllable.	39 34 37	42 38 41
Turning	"RETRACTED"	Idling MCP Idling MCP	Aeroplane is fully controllable. No excessive loss	39 34 37 31	42 38 41 35
Turning flight	"RETRACTED" "TAKE OFF" "LANDING"	Idling MCP Idling MCP Idling	Aeroplane is fully controllable. No excessive loss of altitude during	39 34 37 31 35	42 38 41 35 38
Turning flight (steady	"RETRACTED" "TAKE OFF" "LANDING" 1st, Rosition	Idling MCP Idling Idling Idling MCP	Aeroplane is fully controllable. No excessive loss of altitude during recovery.	39 34 37 31 35 28	42 38 41 35 38 32
Turning flight (steady turn with 30%	"RETRACTED" "TAKE OFF" "LANDING" 1st. Rosition "LANDING"	Idling MCP Idling Idling MCP Idling Idling	Aeroplane is fully controllable. No excessive loss of altitude during recovery.	39 34 37 31 35 28 32	42 38 41 35 38 32 36





#### 5.2.3 Take-off performance

Take-off distances stated in the following table are valid at sea level and ambient temperature of 15 °C (59 °F).

RWY	Take-o dista	off run ance	Take-off distance over 15 m ( <i>50 ft</i> ) obstacle			
	[m]	[ft]	[m]	_[ft]		
CONCRETE	145	475	(280)	919		
GRASS	155	509	300 /	984		

#### 5.2.4 Landing distances

Landing distances stated in the following table are valid at sea level and ambient temperature of  $15 \degree C$  (59 °F).

RWY	Landing distance over 15 m (50 ft) obstacle		Landing run distance (braked)		
	[m]	[ft]	[m]	[ft]	
CONCRETE	520	1706	210	689	
GRASS	500	1640	200	656	

$\bigcirc$	Document No.: EV2000RLPEN	Date of Issue: 01/2001	Revision:	5-4









#### Horizontal speeds

In the following tables state indicated airspeeds (IAS) and corresponding True air speeds (TAS) versus altitude, all for various engine speeds.

					Cru	uise pov	wer		Maximum Continuous Power	Maximum Takeoff Power
	Engine spe	ed [RPM]	4000	4200	4500	4800	5000	5200	5500	5750
	0	IAS [km/h]	126	135	149	164	173	183	/198	210
A	U	TAS [km/h]	126	135	148	161	169	1,78	191	202
S	500	IAS [km/h]	122	131	145	159	168	177	191	203
2	500	TAS [km/h]	126	134	147	1,6Q	168	177/	190	200
<u></u>	1000	IAS [km/h]	118	127	140	(153)	162	-171	184	195
e	1000	TAS [km/h]	125	134	146/	159	167	175	188	198
pn	2000	IAS [km/h]	110	119	13⁄1	<u>⁄</u> 143	151/	159	170	180
tit	2000	TAS [km/h]	124	132	144	156	164	172	184	194
A	2000	IAS [km/h]	103	110	(12/1)	132	139	146	157	165
	3000	TAS [km/h]	122	130	142	153	/161	168	179	188

~	Document No.:	
/	EV2000RLPEN	





#### 5.3.2 Endurance

The following table states fuel consumptions, endurances and ranges for appropriate regimes.

Fuel tank Volume	=	65	litres	17,2 Usgals
Fuel reserve	=	11	litres	2,9 Usgals
		indicated by	vellow w	arning lamp

#### Altitude 500 m ISA

				_				
Engine speed	[rpm]	4000	4200	4500	4800	5000	5200	5500
Fuel consumption	[l/h]	12,2	13,7	16,3	19,0	20,8	22,7	25,5
IAS	[km/h]	1,22	131	145/	159	168	177	191
CAS	[km/h]	/123	131-	_143	156	164	173	185
Total Endurance	[hour]	~5,3	4,7	4,0	3,4	3,1	2,9	2,6
Total Range	[km] /	660	620	570	530	510	490	470
Endurance at reserve	[hour]	0,9	0,8⁄	0,7	0,6	0,5	0,5	0,4
Range at reserve	[km] /	110	100	100	90	90	80	80

~	Document No.:
/	EV2000RLPEN





#### 5.3.3 Balked landing climb









## **SECTION 6**

## 6. WEIGHT AND BALANCE

6.1 Introduction6.2 Weight and balance record / Permitted payload range

Document No.: EV2000RLPEN

(





#### 6.1 Introduction

This section contains the payload range within which the aircraft may be safely operated.

Procedures for weighing the aircraft and the calculation method for establishing the permitted payload range are contained in the Technical Description, Operating and Maintenance Manual for the Ultra-light Aeroplane *EV-97*, *EUROSTAR*[#] model 2000 version *R*.





y/tr.)	proved		Signature											<		/		
(0.72 kg	Ap	Date										/	$\langle $		$\overline{\langle}$	$\leq$		
tht of fuel		1/4	18 litre 4.8 USgall	<b>13 kg</b> 29 lbs											$\Big)$	~		
<b>or [/bs]</b> ht – Weig		1/2	<b>28 litre</b> 7.4 USgalls	20 kg 44 lbs					/									
<b>[kg]</b> jage weig	U	3/4	<b>41 litre</b> 10.8 USgalls	<b>30 kg</b> 66 lbs			/	$\langle \rangle$		/ /		7						
<b>it</b> ght - Bagg	JELLIN	٦	49 litre 12.9 USgalls	<b>35 kg</b> 77 lbs	<	$\wedge$			$\bigtriangledown$	$\sim$	7							
<mark>w weigh</mark> Empty wei	E	+	65 litre 17.2 USgalls	47 kg 104 lbs	( )	A N.	V a li	$\left  \right\rangle$	>									
<b>Permitted cre</b> v ke-off weight - E		Fuel gauges	Fuel volume	Fuel weight	max. 15 kg	1/2 (8 kg 47.lbs	No baggage	max. 15 kg 33 lbs	1/2 8 kg 17 lbs	No baggage	<b>max.</b> 15 kg 33 lbs	1/2 8 kg 17 lbs	No baggage	max. 15 kg 33 lbs	1/2 8 kg 17 lbs	No baggage		
jht = Max.⊺a		C.G.	position [% MAC]															
Zrew weig		Empty weight	[kg] or The	2														
			Date															
Document No.: EV2000RLPEN					Date of Issue:					Revision:				6-	2			





## **SECTION 7**

# 7. AEROPLANE AND SYSTEMS

7.1 Introduction

7.2 Airframe

7.2.1 Fuselage

7.2.2 Wing

7.2.3 Horizontal tail unit (HTU)

7.2.4 Vertical tail unit (VTU)

7.3 Controls in the cockpit

7.4 Instrument panel

7.5 Landing gear

7.6 Seats and safety harness

7.7 Baggage compartment

7.8 Canopy

7.9 Powerplant

7.10 Fuel system

7.11 Electrical system

7.12 Pitot and static pressure systems

7.13 Miscellaneous equipment

7.14 Avionics





#### 7.1 Introduction

This section provides description and operation of the aircraft and its systems.

Refer to section 9, Supplements, for details of optional systems and equipment.

#### 7.2 Airframe

The **EV-97 "EUROSTAR" model 2000 version R** airframe is of semimonocoque construction, formed with metal reinforcements, bulkheads and a duralumin cover.

#### 7.2.1 Fuselage

The fuselage has a semimonocoque construction formed with reinforcements and duralumin covers.

The fuselage cross-section is rectangular in the lower section and elliptical in the upper one. The tail fin is an integral part of the fuselage. In the middle section of the fuselage there is a two-man cockpit which is accessible by unfolding the one-part perspex overlap canopy. The engine section in the nose is separated from the crew by a firewall to which the engine bed is attached.

#### 7.2.2 Wing

The rectangular wing is a monospar construction with an auxiliary spar for the ailerons and flaps attachments. All the elements are riveted together. At the ends of the wings fibre glass wing tips are riveted. The wing can be equipped with a folding mechanism for a convenient storing in the hangar.

## 7.2.3 Horizontal tail unit (HTU)

The rectangular HTU consists of a stabiliser and elevator with a trim tab. The semimonocoque construction of the HTU consists of duralumin ribs, spar and cover. The width of 2.5 m (8.2 ft) enables transport on a sidecar without dismantling.

~	Document No.:
/	EV2000RLPEN















#### 7.5 Landing gear

The plane has fixed landing gear with a controllable nose wheel. The main landing gear legs are composed of a composite spring. The wheels on both landing gear legs are equipped with 14 x 4 tyres

with hydraulic disc brakes that are controlled by foot pedals on the main rudder pedals. The nose landing gear leg is welded from steel tubes and its suspension is made from rubber rope.

The nose wheel steering system is connected to the rudder control. The wheels



may be equipped with aerodynamic, fiberglass covers.

# 7.6 Seats and safety harness

The plane has two side-byside seats which are fixed, unadjustable and thinly upholstered. Each seat is equipped with four point safety belts attached to the centre of bulkhead behind the baggage compartment and alongside the seats.



#### 7.7 Baggage compartment

The baggage compartment is located behind the seats.

Maximum baggage weight is stated on the placard located near the baggage compartment





#### 7.8 Canopy

The semi drop-shaped canopy consists of a steel frame on which is bolted the organic glass canopy. The canopy is attached to the nose section of the fuselage by two pins which make it possible for the canopy to be tilted forward. For easier manipulation, the weight of the canopy is counterbalanced by two gas struts which allow it to open effortlessly. On the lower frame there are handles outside the canopy. The canopy is equipped with a lock in the rear upper section of the frame.



Fig. Two-parts cockpit canopy 1- front tilted canopy, 2 - rear fixed canopy, 3 - side vent window, 4 - canopy lock, 5 - fuel tank filler cap

Fig. Cockpit canopy lock 1- inside lever 2 - outside lever (with a lock)





#### 7.9 Powerplant

The standard powerplant of the *EV-97 "EUROSTAR" model 2000 version R* is the ROTAX 912 A resp. UL (80 hp) engine. The ROTAX 912 S resp. ULS (100 hp) may be installed as option.

Rotax 912 is 4-stroke, 4 cylinder horizontally opposed, spark ignition engine with one central camshaft-push-rod-OHV

Liquid cooled cylinder heads, ram air cooled cylinders,

Dry sump forced lubrication.

Dual breakerless capacitor discharge ignition.

The engine is fitted with an electric starter, AC generator and mechanical fuel pump. Prop drive via reduction gear with integrated shock absorber.

The two blade, fixed, wooden propeller N 230C is installed as standard on the ROTAX 912 A resp. UL engine.





#### 7.10 Fuel system

The fuel system consists of a 65 litre (*17.2 USgals*) tank, a fuel cock, a filter and a fuel pump on the engine. The tank is positioned in the separate space behind the seats, has a drain pocket and a drain valve. The outlet is situated below the fuselage.

Fuel quantity is indicated by a fuel-sight gauge or by an electric float fuel gauge. The electric fuel gauge indicates the relative quantity of fuel in the tank (corresponding quantity in litres is shown in the table 6.2 and on placard "LOAD LIMITS" in the cockpit).

#### 7.11 Electrical system

The electric system is single-wire type with the negative connected to the chassis. Both the single-phase generator integrated to the engine and the 12V/16Ah maintenanceless battery located on the firewall serve as power sources. The system is protected by the main circuit breaker (ACCU) positioned on the instrument panel. The circuits of the particular sections are each guarded separately by circuit breakers.

The engine dual ignition is a separate part of the electric system. Each ignition circuit is has its own position on the ignition box to allow ignition check and position BOTH for normal operation.





#### 7.12 Pitot and static pressure systems

The Pitot static head serving to read dynamic and static air pressure is located under the left half of the wing. Pressure distribution to individual instruments is done through flexible plastic hoses.

Keep the system clear to assure its right function.

Both the dynamic and static hose systems are equipped with dirt pockets. The dirt pockets are located inside the cockpit just before the pilot's seat.

In the case where water is inside the system, unscrew the covers from the dirt pockets and blow into the Pitotstatic head. Then screw the covers back and check the sealings.



CAUTION

Avoid blowing into the Pitot static system with dirt pocket cover closed - it may cause instrument damage.





#### 7.13 Miscellaneous equipment

Besides the instruments stated in par. 7.14, the EV-97*"EUROSTAR" model 2000 version R* aeroplane, S/N XXXXXX: is fitted with the following equipment:










# **SECTION 8**

# 8. Aeroplane handling, servicing and maintenance

- 8.1 Introduction
- 8.2 Aircraft inspection periods
- 8.3 Aircraft alterations or repairs

## 8.4 Ground handling / Road transport

- 8.4.1 Towing
- 8.4.2 Parking
- 8.4.3 Mooring
- 8.4.4 Jacking
- 8.4.5 Levelling
- 8.4.6 Road transport
- 8.5 Cleaning and care



#### PILOT'S OPERATING HANDBOOK



## 8.1 Introduction

This section contains factory-recommended procedures for proper ground handling and servicing of the aeroplane. It also identifies certain inspection and maintenance requirements which must be followed if the aeroplane is to retain that new-plane performance and dependability. It is wise to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered. This should be done according to the Technical Description, Operating and Maintenance Manual for Ultralight Aeroplane *EV-97 "EUROSTAR" model 2000 version R*.

## 8.2 Aircraft inspection periods

Periods of overall checks and contingent maintenance depends on the condition of the operation and on overall condition of the aeroplane. The manufacturer recommends that maintenance checks and periodic inspections should be carried out in the following periods, at least:

- a) after the first  $25 \pm 2$  flight hours
- b) after every  $50 \pm 3$  (light hours
- c) after every 100 ± 5 flight hours or at least annual inspection

Every other annual inspection should be performed by the manufacturer.

Refer to the Rotax 912 Operator's Manual for engine maintenance. Maintain the prop according to its manual.

Refer to the Technical Description, Operating and Maintenance Manual for the Ultra-light Aeroplane *EV-97 "EUROSTAR" model* 2000 version *R* for more details about maintenance.

8.3

## Aircraft alterations or repairs

It is essential that the responsible airworthiness authority and the aircraft manufacturer be contacted prior to any alternations to the aircraft to ensure that the airworthiness of the aircraft is not violated.

If the aircraft weight is affected by that alternation, a new weighing is necessary to take note of the new empty weight. Then the Weight and balance record / Permitted payload range 6.2 and up-date the placard "Load Limits," have to be filled in.





Refer to the Technical Description, Operating and Maintenance Manual for Ultra-light Aeroplane *EV-97 "EUROSTAR" model* 2000 *version R* for aeroplane repairs.

## 8.4 Ground handling / Road transport

#### 8.4.1 Towing

It is easy to tow the aircraft a short distance by holding the prop blade at the root since the empty weight of this aeroplane is relatively low.

Suitable surfaces to hold the aeroplane airframe are the rear part of the fuselage before the fin and wing roots.

A tow bar may be used to tow the aeroplane a long distance.

#### CAUTION

Avoid excessive pressure at the aeroplane airframe - especially at the wing tips, elevator, rudder, trim etc.

#### CAUTION

Handle the propeller by holding the blade root - never blade tip! If starting the engine manually - always handle the propeller on a blade surface i.e. do not hold only an edge.

## 8.4.2 Parking

It is advisable to park the aeroplane inside a hangar or alternatively inside any other proof space (garage) with stable temperature, good ventilation, low humidity and dust-free environment.

It is necessary to moor the aeroplane when it is parked outside a hangar. Also when parking for a long time, cover the cockpit canopy, possibly the whole aeroplane by means of a suitable tarpaulin.



## PILOT'S OPERATING HANDBOOK



#### 8.4.3 Mooring

If the aircraft is parked outside a hanger then it requires to be moored securely. The mooring is necessary to protect the aeroplane against possible damage caused by wind and gusts.

For this reason the aircraft is equipped with mooring eyes located on the lower surfaces of the wings.

Mooring procedure:

- 1. Check: Fuel cock shut off, Circuit breakers and Master switch switched off, Switch box switched off.
- 2. Block the control stick up e.g. by means of safety harness or connect the control stick with rudder pedals by means of a suitable rope.
- 3. Shut all the ventilation windows.
- 4. Close and lock cockpit.
- 5. Moor the aircraft to the ground by means of a mooring rope passed through the mooring eyes located on the lower surfaces of the wings. It is also necessary to moor the nose wheel landing gear and the tail skid to the ground.

#### NOTE

In the case of long term parking it is advisable to cover the cockpit canopy, or possibly the whole aircraft, by means of a suitable tarpaulin attached to the airframe.





## 8.4.4 Jacking

Because the empty weight of this aircraft is relatively low, two people can lift the aircraft easily.

First of all prepare two suitable supports to support the aircraft.

It is possible to lift the aircraft by handling the following parts:

- Press on the rear part of the fuselage, just before the fin, to lift the front of the aircraft. Then support the weight under the firewall.
- To jack the rear part of the aircraft, handle the fuselage near the auxiliary tail skid, lift it upward and support.
- To lift the wings, push from underneath the wings <u>only</u> at the main spar. Avoid lifting the wings by means of handling the wing tips.

## 8.4.5 Levelling

Refer to the Technical Description, Operating and Maintenance Manual for the Ultra-light Aeroplane *EV-97 "EUROSTAR" model 2000 version R* for more details about levelling.

#### 8.4.6 Road transport

The aircraft may be transported after its loading by a suitable car trailer. It is necessary to dismantle the wings before road transport. The aircraft and dismantled wings should be fastened down securely to ensure these parts against possible damage.



#### PILOT'S OPERATING HANDBOOK



#### 8.5 Cleaning and care

Use efficient cleaning detergents to clean the aircraft surface. Oil spots on the aircraft surface (except the canopy!) may be cleaned with petrol.

The canopy may only be cleaned by washing it with a sufficient quantity of lukewarm water and an adequate quantity of a detergents. Use either a soft, clean cloth sponge or deerskin. Then use suitable polishers to clean the canopy.

#### CAUTION

Never clean the canopy under "dry" conditions and <u>never</u> use petrol or chemical solvents!

Upholstery and covers can be removed from the cockpit, brushed and eventually washed in lukewarm water with an adequate quantity of detergents. Dry the upholstery thoroughly before insertion into the cockpit.

CAUTION

In the case of long term parking, cover the canopy to protect the cockpit interior from direct sunshine.

Document	No.:
EV2000RL	PEN





## **SECTION 9**

- 9. Supplements
- 9.1 Introduction
- 9.2 List of inserted supplements
- 9.3 Supplements inserted



[

## PILOT'S OPERATING HANDBOOK



## 9.1 Introduction

This section contains the appropriate supplements necessary to safely and efficiently operate the aircraft when equipped with various optional systems and equipment not provided with the standard aeroplane.

## 9.2 List of inserted supplements

Date	Doc.No.	Title of	inserted suppleme	nt
Documer EV2000R	It No.:	Date of Issue:	Revision:	9-1

	PILOT'S OPERATING HAI	NDBOOK	EV-97 EURO MODEL 2000 STA
9.3	Supplements inserted		
			]
		~	
		/	

PILOT'S OPER	ATING HAND	воок	EV-97 EURO MODEL 2000 STA version R
	(		$\geq$
		$\sim$	
<			

 $\langle \rangle$